环境工程系
何作利
职称:教授
办公室:K5-307-1
邮箱: zlhe@sdu.edu.cn
电话:
个人简介
研究方向
教育经历
科研项目
代表性论文
详细信息

 

何作利教授,博士生导师,荣获2024年山东大学环境学院“我心目中的好导师”、2020年山东大学“十佳书院导师”等荣誉称号。入选山东省泰山学者青年专家、山东大学未来青年学者等,同时担任教育部研究生教育评估监测专家、山东省高层次人才、山东省科技专家库专家、广东省科技专家库专家及多种国家级省部级项目评审专家。同时为山东省人才促进会会员、中国感光学会-光催化专业委员会会员、中国化学会会员,还担任Coatings编委、Acta Phys-chim Sin与Rare Metals青年编委,2024年7月获得物理化学学报青年编委杰出贡献奖。

通信地址:山东省青岛市即墨区滨海路72号 山东大学(青岛校区)环境科学与工程学院

E-mail: zlhe@sdu.edu.cn

个人主页http://faculty.sdu.edu.cn/hezuoli/zh_CN/index.htm

欢迎勤奋上进的博士后、博士、硕士、本科生加入课题组,开展科研工作。

1. 主要研究方向:

近年来,致力于异质结催化剂的开发与功能复合纤维的制备,围绕光解水产氢、水中有机污染物与抗生素去除、碳氢燃料转化、重金属离子去除与监测、应变/湿度传感等方面开展了大量研究工作,并开发了水处理用高性能光催化复合纤维及其织物器件,可实现光催化技术及纳米催化剂在处理实际废水的大规模应用,具有广阔的应用前景和重要的战略意义。迄今为止发表国际期刊论文80余篇,以第一作者或通讯作者在Nano Energy、Small、Appl. Catal. B: Environ.、Chinese J. Catal.、NPJ Clean Water、Chem. Eng. J.、J. Mater. Sci. Technol.、Carbon、ACS Appl. Mater. Interfaces、J. Hazard. Mater.、Rare Metals、Mater. Today Nano、Nanoscale、Sep. Purf. Technol.、Appl. Mater. Today、Appl. Surf. Sci.、ACS Appl. Nano Mater.、ACS Appl. Energy Mater.等国际著名期刊发表学术论文50余篇(更多发表论文请参见:https://orcid.org/0000-0002-6175-2447),论文被引总次数3500余次,连续入选 2023 & 2024年全球前2%顶尖科学家榜单。申请国家发明专利5项(已授权3项),韩国专利1项,参与项目获陕西省高等学校科学技术一等奖2项。

主要研究方向为功能复合材料(异质结催化剂与功能复合纤维)及其新能源开发和环境污染治理方面的应用(包含多技术协同去除有机污染物、污染物传感与监测技术、光解水产氢、含氮化合物间转换、光热催化合成等方面),涉及环境化学,材料化学,无机化学,光化学,有机化学,配位化学,电化学及能源化学多个领域。课题组设备齐全,可满足功能复合材料(高分散异质结催化剂,薄膜与纤维)的制备、光电化学测试、材料机械性能测试、水中有机污染物及无机离子的分析等

2. 工作经历:

2024.09至今

山东大学

环境科学与工程学院

教授 

2019.06至 2024.08  

山东大学 

环境科学与工程学院

研究员

2017.102019.06

韩国材料研究所

复合材料部

高级研究员

2015.082017.08 

浦项工科大学

环境科学与工程部

博士后

3. 教育背景:

2011.092015.06

西安交通大学电信学部

电子科学与技术

工学博士

2013.112014.11

犹他大学理学院

超分子化学

联培博士

2008.092011.06

陕西科技大学材料学院

材料加工工程 

工学硕士

2004.092008.07

山东轻工业学院材料学院

无机非金属材料工程

工学学士

4. 入职山东大学后主持的科研项目:

国家基金面上项目202301 ~ 202612);

国家联合基金项目子课题(202301-202612

国家基金青年项目(202101 ~ 202312);

山东省青年泰山学者专项基金(202001 ~ 202412);

山东大学青年交叉科学创新群体成员(202001 ~ 202312);

山东大学未来青年学者基金(201908 ~ 202407);

江苏省自然科学青年基金项目(202007 ~ 202306);

5. 代表性研究成果:ORCID: 0000-0002-6175-2447

[1]L. Xiao, J. Zhang, T. Lu, G.-h. Zhou, Y. Ren, Z. Zheng, X. Z. Yuan, S. G. Wang, Z. He,* High-strength TiO2/TPU composite fiber based textiles for organic pollutant removal, NPJ Clean Water, 7 (2024) 98.

[2]Y. X. Feng, H. J. Yu,* T. G. Lu, Z. Y. Zheng, S. Tian, L. Xiang, S. Zhao, S. G. Wang, Z. He,* Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances, Rare Met., 43 (2024) 5891-5904.

[3]W. Chen, M. Dai, L. Xiang, S. Zhao, S. Wang, Z. He,* Assembling S-scheme heterojunction between basic bismuth nitrate and bismuth tungstate with promoting charges’ separation for accelerated photocatalytic sulfamethazine degradation, J. Mater. Sci. Technol., 171 (2024) 185-197.

[4]Z. Zheng, S. Tian, Y. Feng, S. Zhao, X. Li, S. Wang, Z. He,* Recent advances of photocatalytic coupling technologies for wastewater treatment, Chinese J. Catal., 54 (2023) 88-136.

[5]M. Dai, H. Yu, W. Chen, K.-A. Qu, D. Zhai, C. Liu, S. Zhao, S. Wang, Z. He,* Boosting photocatalytic activity of CdLa2S4/ZnIn2S4 S-scheme heterojunctions with spatial separation of photoexcited carries, Chem. Eng. J., 470 (2023) 144240.

[6]M. Dai, Z. He,* W. Cao, J. Zhang, W. Chen, Q. Jin, W. Que, S. Wang, Rational construction of S-scheme BN/MXene/ZnIn2S4 heterojunction with interface engineering for efficient photocatalytic hydrogen production and chlorophenols degradation, Sep. Purif. Technol., 309 (2023) 123004.

[7]W. Cao, Z. He,* M. Dai, G. Wang,* G. Huang, S. Wang,* Electronic structure modulation of bimetallic sulfides for efficient sacrificial-agent-free photocatalytic H2 evolution, ACS Appl. Energy Mater., 6 (2023) 4715-4723.

[8]H. Liu, Z. He, S. Wang, S. Zhao,* CoZn-ZIF and melamine co-derived double carbon layer matrix supported highly dispersed and exposed Co nanoparticles for efficient degradation of sulfamethoxazole, Chem. Eng. J., 469 (2023) 144054.

[9]H. Liu, Z. He, J. Li, S. Zhao,* Well-dispersed cobalt nanoparticles encapsulated on ZIF-8-derived N-doped porous carbon as an excellent peroxymonosulfate activator for sulfamethoxazole degradation, Chem. Eng. J., 451 (2023) 138597.

[10]H. Yu, M. Dai, J. Zhang, W. Chen, Q. Jin, S. Wang,* Z. He,* Interface engineering in 2D/2D heterogeneous photocatalysts, Small, 19 (2023) 2205767. 山大视点-学术纵横山大微博山东大学(青岛)学术动态

[11]Z. He, G. Zhou,* Y. Oh, B. Jung, M. Um, S. Lee, J. Song,* J. Byun,* T. Chou, Ultrafast, highly sensitive, flexible textile-based humidity sensors made of nanocomposite filaments, Mater. Today Nano, 18 (2022) 100214.

[12]J. Zhang, M. Dai,* P. Zhang,* S. Wang,* Z. He,* Recent progress on carbon nanotube based materials for photocatalytic applications: A review, Solar RRL, 6 (2022) 2200243.

[13]M. Dai, Z. He,* P. Zhang, X. Li,* S. Wang,* ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution, J. Mater. Sci. Technol., 122 (2022) 231-242.

[14]H. Yu, S. Xu, S. Zhang, S. Wang, Z. He,* In-situ construction of core–shell structured TiB2-TiO2@g-C3N4 for efficient photocatalytic degradation, Appl. Surf. Sci., 579 (2022) 152201.

[15]J. Zhang, X. Li, J. Guo, G.H. Zhou, L. Xiang, S.G. Wang, Z. He,* Novel TiO2/TPU composite fiber-based smart textiles for photocatalytic applications, Mater. Adv., (2022) 1518-1526.

[16]S. Fang, M. Dai, R. Chen, Z. He,* G. Zhang,* Y. Ding, Diaza-substitution on dibenzothiophene sulfone-based linear conjugated polymers for highly efficient visible-light photo-catalytic hydrogen evolution via substituted-position optimization, Dyes Pigm., 206 (2022) 110645.

[17]W. Zhao, D. Zhai, C. Liu,* D. Zheng, H. Wu, L. Sun, Z. Li, T. Yu, W. Zhou, X. Fang, S. Zhai, K. Han, Z. He, W. Deng, Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer, Appl. Catal. B: Environ., 300 (2022) 120719.

[18]S. Zhang, Z. He,* S. Xu, X. Li, J. Zhang, X. Zhan,* M. Dai,* S. Wang,* In situ liquid-phase growth strategies of g-C3N4 solar-driven heterogeneous catalysts for environmental applications, Solar RRL, 5 (2021) 2100233.

[19]L. Xiao, X. Li, J. Zhang, Z. He,* MgB4 MXene-like nanosheets for photocatalytic hydrogen evolution, ACS Appl. Nano Mater., 4 (2021) 12779-12787.

[20]S. Zhang, Z. He,* G. Zhou, B. Jung,* T. Kim,* B. Park, J. Byun, T. Chou, High conductive free-written thermoplastic polyurethane composite fibers utilized as weight-strain sensors, Compos. Sci. Technol., 2020, 189, 108011.

[21]Z He,* J. Zhang, X. Li, S. Guan, M. Dai,* S. Wang,* 1D/2D heterostructured photocatalysts: From design and unique properties to their environmental applications, Small, 16 (2020) 2005051.

[22]Z. He, G. Zhou,* J. Byun,* S. Lee,* M. Um, B. Park, T. Kim, S. Lee, T. Chou, Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors, Nanoscale, 2019, 11, 5884-5890.

[23]Z. He, J. Byun,* G. Zhou, B. Park, T. Kim, S. Lee,* J. Yi, M. Um, T. Chou, Effect of MWCNT content on mechanical and strain-sensing performance of thermoplastic polyurethane composite fibers, Carbon, 2019, 146, 701-708

[24]Z. He, C. Kim, T. Jeon, W. Choi,* Hydrogenated heterojunction of boron nitride and titania enables the photocatalytic generation of H2 in the absence of noble metal catalysts, Appl. Catal. B: Environ., 2018, 237, 772-782

[25]Z. He, C. Kim, L. Lin, T. Jeon, S. Lin, X. Wang,* W. Choi,* Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis, Nano Energy, 2017, 42, 58-68

[26]Z. He, * M. Li, W. Que,* P.J. Stang,* Self-assembly of metal-ion-responsive supramolecular coordination complexes and their photophysical properties, Dalton Trans., 2017, 46, 3120-3124.

[27]Z. He, W. Que,* Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Appl. Mater. Today, 2016, 3, 23-56.

[28]Z. He, W. Que,* P. Sun, J. Ren, Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2013, 5, 12779-12783.

[29]Z. He, W. Que,* Surface scattering and reflecting: the effect on light absorption or photocatalytic activity of TiO2 scattering microspheres, Phys Chem Chem Phys, 2013, 15, 16768-16773.

[30]Z. He, W. Que,* H. Xie, C. Jing, Y. Yuan, S. Peng, Facile synthesis of self-sensitized TiO2 photocatalysts and their higher photocatalytic activity, J. Am. Ceram. Soc., 2012, 95, 3941-3946.

[31]Z. He, W. Que,* J. Chen, X. Yin, Y. He, J. Ren, Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis, ACS Appl. Mater. Interfaces, 2012, 4, 6816-6826.

[32]Z. He,* Z. Zhu, J. Li, J. Zhou, N. Wei, Characterization and activity of mesoporous titanium dioxide beads with high surface areas and controllable pore sizes, J. Hazard. Mater., 2011, 190, 133-139.